Month: December 2016

Spring 1945 offensive in Italy

Home | Spring 1945 offensive in Italy

Allied victory

15th Army Group

Army Group C 394,000 fighting strength

The Spring 1945 offensive in Italy, codenamed Operation Grapeshot, was the final Allied attack during the Italian Campaign in the final stages of the Second World War, launched by the 15th Allied Army Group, the Plain started on 6 April 1945, ending on 2 May with the formal surrender of German forces in Italy.

The Allies had launched their previous major offensive, on the Gothic Line, in August 1944 with the British Eighth Army, under Lieutenant-General Oliver Leese, attacking up the coastal plain of the Adriatic and the U.S. Fifth Army, led by Lieutenant General Mark Clark, attacking through the central Apennine Mountains. Although they managed to breach the formidable Gothic Line defences, they narrowly failed to break out into the Po Valley before the winter weather closed in and made further progress impossible. Their forward formations spent the rest of the winter in highly inhospitable conditions while preparations were made to renew the campaign when better conditions returned in the spring.

When Field Marshal Sir John Dill, the head of the British Mission in Washington how to tenderise meat quickly, died on 5 November, Field Marshal Sir Maitland Wilson was appointed his replacement. General Harold Alexander, having been promoted to Field Marshal, was in turn appointed to replace Wilson as Allied Supreme Commander Mediterranean on 12 December. Lieutenant General Mark Clark succeeded Alexander as commander of the Allied forces in Italy (renamed 15th Army Group) but without promotion. Lieutenant General Lucian K. Truscott had been commanding U.S. VI Corps from its time in the beachhead at Anzio and the capture of Rome to its current location in Alsace, having landed in the South of France during Operation Dragoon. He returned to Italy to assume command of U.S. Fifth Army.

Command changes also took place in the German army before the spring campaign. On 23 March Albert Kesselring was appointed Commander-in-Chief Army Group West, replacing General-Field Marshal Gerd von Rundstedt. Heinrich von Vietinghoff returned from the Baltic to take over from Kesselring while Traugott Herr, the experienced commander of German 10th Army’s LXXVI Panzer Corps, took over 10th Army. Joachim Lemelsen, who had had temporary command of the 10th Army, returned to the command of the 14th Army.

Looking ahead to the spring, the problems of manning continued. In October 1944, 4th Indian Infantry Division had been sent to Greece and British 4th Infantry Division had followed them in November as well as 139th Brigade of British 46th Infantry Division, with the rest of the 46th following in December along with the 3rd Greek Mountain Brigade. In early January 1945 the British 1st British Division was sent to Palestine. At the end of January 1945, I Canadian Corps and British 5th Infantry Division were ordered to North West Europe, reducing Lieutenant-General Richard McCreery’s Eighth Army to 7 divisions. Two other divisions, both British, were to follow them to Europe, but Alexander argued for these to instead remain in Italy.

On the positive side, however, the Fifth Army had been reinforced from September to November 1944 with the arrival of fresh troops of 1st Brazilian Division and in January 1945 with the specially trained and equipped U.S. 10th Mountain Division. Allied strength amounted to 17 divisions plus 8 independent brigades (including four Italian groups of volunteers from the Italian Co-Belligerent Army, equipped and trained by the British), a total equivalent of just under 20 divisions. 15th Army Group’s total headcount amounted to 1,334,000 men with Eighth Army’s effective fighting strength totalling 632,980 men and Fifth Army 266,883. Against them were ranged 21 much weaker German divisions and 4 Italian ENR divisions, a total of 25. Three of the Italian divisions were allocated to the Ligurian Army under Rodolfo Graziani guarding the western flank facing France and the fourth to 14th Army in a sector thought least likely to be attacked waist pack with water bottle.

Clark set out his battle plan on 18 March. Its objective was “…to destroy the maximum number of enemy forces south of the Po, force crossings of the Po and capture Verona.” In Phase I the British Eighth Army would successively cross the Senio and Santerno rivers and then make a dual thrust, one towards Budrio parallel to the Bologna road, Route 9 (the Via Emilia) and the other north west along Route 16, the Via Adriatica, towards Bastia and the Argenta Gap, a narrow strip of dry terrain through the flooded land west of Lake Comacchio. An amphibious operation across the lake and parachute drop would bring pressure to bear on the flank and help to break the Argenta position. Depending on the relative success of these actions a decision would be made on whether Eighth Army’s prime objective would become Ferrara, on the Via Adriatica, or remain Budrio. Meanwhile, it was intended for U.S. Fifth Army to launch the Army Group’s main effort at 24 hours notice from two days after Eighth Army’s attack and break into the Po valley. The capture of Bologna was given as a secondary task.

In Phase II, the Eighth Army was to drive north west to capture Ferrara and Bondeno local football jerseys, blocking routes of potential retreat across the Po. U.S. Fifth Army was to push past Bologna north to link with Eighth Army in the Bondeno region to complete an encirclement of German forces south of the Po. The Fifth Army was also to make a secondary thrust further west towards Ostiglia, the crossing point on the Po of the main route to Verona. Phase III involved the establishment of bridgeheads across the Po and exploitation north.

The Eighth Army plan (Operation Buckland) had to deal with the difficult initial task of getting across the Senio, with its raised artificial banks varying between 6 metres (20 ft) and 12 m (40 ft) in height, honeycombed with defensive tunnels and bunkers front and rear. V Corps were ordered to make an attack on the salient formed by the river into the Allied line at Cotignola. On the right of the river’s salient was 8th Indian Infantry Division, reprising the role they played crossing the Rapido in the final Battle of Monte Cassino. To the left of the 8th Indian Division, on the left of the salient, the 2nd New Zealand Division would attack across the river to form a pincer. To the left of V Corps, on Route 9, the Polish II Corps would widen the front further by attacking across the Senio towards Bologna. The Poles had been desperately under strength in the autumn of 1944, but had received 11,000 reinforcements during the early months of 1945, mainly from Polish conscripts in the German Army taken prisoner in the Battle of Normandy the previous summer .

Once across the Senio the assault divisions were to advance to cross the Santerno. Once the Santerno was crossed, British 78th Division would also reprise their Cassino role and pass through the bridgehead established by the Indians and New Zealanders and drive for Bastia and the Argenta gap, 23 kilometres (14 mi) behind the Senio, where the dry land narrowed to a front of only 5 km (3 mi), bounded on the right by Lake Comacchio, a huge lagoon running to the Adriatic coast, and on the left by marshland. At the same time British 56th Division would launch the amphibious flank attack along Lake Comacchio. On V Corps’ left flank the New Zealand Division would advance to the left of the marshland on the west side of Argenta while the Indian Division would pass in Army Reserve.

The Fifth Army plan (Operation Craftsman) envisaged an initial thrust by IV Corps along Route 64 to straighten the army front and to draw German reserves away from Route 65. II Corps would then attack along Route 65 towards Bologna. The weight of the attack would then switch westward again to break into the Po valley skirting Bologna.

In the first week of April, diversionary attacks were launched on the extreme right and left of the Allied front to draw German reserves away from the main assaults to come. This included Operation Roast, an assault by British 2nd Commando Brigade and armour to capture the seaward isthmus of land bordering Lake Comacchio and seize Port Garibaldi on the lake’s north side. Meanwhile, damage to other transport infrastructure having forced Axis forces to use sea, canal and river routes for re-supply, Axis shipping was being attacked in bombing raids such as Operation Bowler.

The build-up to the main assault started on 6 April with a heavy artillery bombardment of the Senio defenses. In the early afternoon of 9 April, 825 heavy bombers dropped fragmentation bombs on the support zone behind the Senio followed by medium and fighter bombers. From 15:20 to 19:10, five heavy artillery barrages were fired, each lasting 30 minutes, interspersed with fighter bomber attacks. In support of the New Zealand operations, 28 Churchill Crocodiles and 127 Wasp flamethrower vehicles were deployed along the front. The 8th Indian Division, 2nd New Zealand Division and 3rd Carpathian Division (on the Polish Corps front at Route 9) attacked at dusk. In fighting in which there were two Victoria Crosses won by 8th Indian Division members, they had reached the river Santerno, 5.6 km (3.5 mi) beyond, by dawn on 11 April. The New Zealanders had reached the Santerno at nightfall on 10 April and succeeded in making a crossing at dawn on 11 April. The Poles had closed on the Santerno by the night of 11 April.

By late morning of 12 April, after an all night assault, the 8th Indian Division was established on the far side of the Santerno and the British 78th Division started to pass through to make the assault on Argenta. In the meantime the British 24th Guards Brigade, part of 56th (London) Infantry Division, had launched an amphibious flanking attack from the water and mud to the right of the Argenta Gap. Although they gained a foothold, they were still held up at positions on the Fossa Marina on the night of 14 April. 78th Battleaxe Division was also held up on the same day on the Reno River at Bastia.

The U.S. 5th Army began its assault on 14 April after a bombardment by 2,000 heavy bombers and 2,000 artillery pieces buy vintage football shirts, with attacks by the troops of U.S. IV Corps (1st Brazilian, 10th Mountain, and 1st Armored Divisions) on the left. This was followed on the night of 15 April by U.S. II Corps striking with 6th South African Armoured and 88th Infantry Divisions advancing towards Bologna between Highway 64 and 65, and 91st and 34th Infantry Divisions along Highway 65. Progress against a determined German defence was slow but ultimately superior Allied firepower and lack of German reserves told and by 20 April both corps had broken through the mountain defences and reached the plains of the Po valley. 10th Mountain Division were directed to bypass Bologna on their right and push north leaving U.S. II Corps to deal with Bologna along with Eighth Army units advancing from their right.

By 19 April, on the Eighth Army front, the Argenta Gap had been forced, and British 6th Armoured Division was released through the left wing of the advancing 78th Division to swing left to race north west along the line of the river Reno to Bondeno and link up with the US 5th Army to complete the encirclement of the German armies defending Bologna. On all fronts the German defense continued to be determined and effective, but Bondeno was captured on 23 April. The 6th Armoured Division linked with US IV Corps’ 10th Mountain Division the next day at Finale some 5 miles (8.0 km) upstream along the river Panaro from Bondeno. Bologna was entered in the morning of 21 April by the Eighth Army’s Polish II Corps’ 3rd Carpathian Infantry Division advancing up the line of Route 9, followed two hours later by US II Corps from the south.

U.S. IV Corps had continued their northwards advance and reached the river Po at San Benedetto on 22 April. The river was crossed the next day, and they advanced north to Verona which they entered on 26 April. To the right of Fifth Army on Eighth Army’s left wing, British XIII Corps crossed the Po at Ficarolo on 22 April, while V Corps were crossing the Po by 25 April, heading towards the Venetian Line, a defensive line built behind the line of the river Adige. As Allied forces pushed across the Po, on the left flank the Brazilian, 34th Infantry and 1st Armored Divisions of IV Corps were pushed west and northwest along the line of Highway 9 towards Piacenza and across the Po to seal possible escape routes into Austria and Switzerland via Lake Garda. On 27 April, the 1st Armored Division liberated Milan, and IV Corps commander Crittenberger entered the city on 30 April. To the south of Milan, at Collechio-Fornovo, the Brazilian Division bottled up the remaining effectives of two German divisions along with the last units of fascist army, taking on 28 April 13,500 prisoners.

On the Allied far right flank, British V Corps, met by lessening resistance, traversed the Venetian Line and entered Padua in the early hours of 29 April, to find that partisans had locked up the German garrison of 5,000.

Secret surrender negotiations between representatives of the Germans and Western Allies had taken place in Switzerland (Operation Crossword) in March but had resulted only in protests from the Russians that the Western Allies were attempting to negotiate a separate peace.

On 28 April, von Vietinghoff sent emissaries to Allied Army headquarters. On 29 April, they signed an instrument of surrender to the effect that hostilities would formally end on 2 May. Confirmation from von Vietinghoff of the arrangements did not reach Allied 15th Army Group headquarters until the morning of 2 May. It emerged that Kesselring had had his authority as Commander of the West extended to include Italy and had replaced von Vietinghoff with General Friedrich Schulz from Army Group G on hearing of the plans. However, after a period of confusion during which the news of Hitler’s death arrived, Schulz obtained Kesselring’s agreement to the surrender and von Vietinghoff was reinstated to see it through.

Eugeniusz Geno Malkowski

Home | Eugeniusz Geno Malkowski

Eugeniusz Geno Malkowski en 2010.

Eugeniusz Geno Malkowski [5 septembre 1942 et mort le à Zamość, est un artiste-peintre polonais, professeur à l’université de Varmie-Mazurie à Olsztyn, créateur d’associations et groupes artistiques, organisateur d’expositions d’art moderne, animateur de l’art connu par ses actions de la peinture rapide où il invite des spectateurs à y participer.

Eugeniusz Małkowski est né à Gdynia. Après la Seconde Guerre mondiale sa famille s’installe à Lębork où il passe son enfance. Il commence son éducation artistique en 1957 au Lycée des Arts Plastiques à Wrocław et la continue à l’Académie des Beaux-Arts de Varsovie avec les professeurs Juliusz Studnicki and Artur Nacht-Samborski. En 1969, il crée le groupe artistique Arka et en 1972 mène sa transformation en un mouvement plus vaste connu sous le nom d’O Poprawę (Pour l’Amélioration). À ce moment-là beaucoup d’artistes polonaises de sa génération se centrent autour de lui. Dans les années 1980, il participe à la création du groupe artistique multidisciplinaire Świat (Monde). Dans les années 1990, il séjourne en France où il fonde l’association artistique ARA (Association pour le Renouveau de l’Art). Avec les membres de tous ces groupes artistiques à travers les années il organise des nombreuses expositions d’art moderne en Pologne et en France.

Depuis 1991, il travaille en tant que professeur d’art à l’université de Varmie-Mazurie à Olsztyn. Il habite à Varsovie. Il a réalisé plus de 50 expositions individuelles et participé à plus de 200 expositions collectives. Ses œuvres font partie des collections de musées de la Pologne et des collections publiques et privées à travers le monde.

Au début de son chemin artistique il recrée le graffiti appliqué directement sur toile à l’aide d’un pinceau à pocher, méthode connue comme tapping. Ses premières œuvres ainsi créées représentent des profils humains, des sphères transparentes ou des contours de mains sur des fonds célestes et irréels. Postérieurement il y ajoute d’autres formes irrégulières en orientant son style vers l’abstraction lyrique. Les titres de ces travaux commentent d’une façon métaphorique la réalité qui l’entoure (Séries: « Wielki Świat » (Le Grand Monde), « Krzyk » (Le cri) or « Exodus »).

Dans les années 1980, il introduit des éléments figuratifs dans ses œuvres et commence à expérimenter avec la division de l’espace de l’œuvre artistique (série «Obszary» (Territoires)). Par la suite il dédie ses efforts à une espèce du collage sur toile émané également du graffiti (série « Współcześni » (Contemporaines)). Dans les années 1990, il passe à la technique dénommée la peinture rapide ou speed painting. Il reproduit des personnes ou des situations d’une façon spontanée, automatique et presque subconsciente en s’approchant ainsi aux bases de l’Expressionnisme abstrait.

Durant la première décennie du XXIe siècle, il retourne au graffiti en utilisant des pochoirs de silhouettes humaines multicolores sur le fond monochromatique (série « Pokolenia » (Générations)).

Entre 1990 et 2010, il a organisé de nombreux happenings ayant comme l’objectif la popularisation de l’art moderne parmi un public non spécialiste. Il pratiquait la peinture contre la montre et il invitait des spectateurs à peindre avec lui dans des centres commerciaux ou dans la rue. Les œuvres ainsi créées étaient ensuite présentées dans des galeries d’art.

Sur les autres projets Wikimedia :

Aroldis Chapman

Home | Aroldis Chapman

Albertin Aroldis Chapman De La Cruz (né le 28 février 1988 à Holguín, Cuba) est un lanceur de relève gaucher de la Ligue majeure de baseball. Il est agent libre après avoir joué pour les Reds de Cincinnati, les Yankees de New York et les Cubs de Chicago.

Il lance de 2010 à 2015 pour les Reds de Cincinnati, qu’il représente 4 fois de suite au match des étoiles. Il détient le record du lancer le plus rapide (105 mph ou 168,9 km/h) à avoir été chronométré en Ligues majeures. Avec des lancers atteignant 102,36 à 103,92 mph (164,7 à 167,2 km/h), il décoche les 62 tirs les plus rapides parmi tous les lanceurs du baseball majeur durant la saison 2015.

Lanceur gaucher considéré comme l’un des meilleurs joueurs d’avenir de Cuba, Aroldis Chapman possède une balle rapide qui a été chronométrée à 105 mph (169 km/h).

Après une tentative avortée de faire défection de son pays natal au printemps 2008, Chapman est convoqué par le président cubain Raúl Castro qui le suspend de la Serie Nacional et le bannit de l’équipe nationale devant participer aux Jeux olympiques d’été de 2008 à Beijing.

Chapman participe toutefois l’année suivante à la Classique mondiale de baseball avec la formation cubaine.

Le 1er juillet 2009, Chapman se trouve à Rotterdam, aux Pays-Bas, pour participer au tournoi de baseball World Port. Pour des raisons inexpliquées, la Fédération cubaine de baseball ne confisqua pas aux joueurs leurs passeports à leur arrivée aux Pays-Bas. Une fois à l’hôtel où l’équipe réside, Chapman informe son co-chambreur qu’il sort fumer une cigarette. Avec pour seuls objets personnels son passeport et un paquet de cigarettes, il décide de faire faux-bond à ses compatriotes et téléphone à une connaissance. Une voiture vient le cueillir et Chapman disparaît pendant deux jours. Il trouve par la suite refuge à Andorre.

Le 11 janvier 2010, les Reds de Cincinnati de la Ligue nationale de baseball annoncent la mise sous contrat d’Aroldis Chapman pour six ans. Le contrat est estimé à 30 millions de dollars US.

Après avoir participé à l’entraînement de printemps des Reds en 2010, il est assigné à leur club-école de niveau Triple-A, les Bats de Louisville de la Ligue internationale.

Rappelé des ligues mineures à la fin août afin d’être disponible pour les Reds durant les séries éliminatoires, Chapman fait ses débuts dans les majeures au Great American Ball Park de Cincinnati le 31 août contre les Brewers de Milwaukee. Il lance une manche parfaite et impressionne avec quatre lancers chronométrés à au moins 100 miles à l’heure, le plus rapide atteignant 103 mph. Le 1er septembre, il demeure parfait durant une autre manche au monticule et est crédité de sa première victoire dans les majeures, dans un gain des Reds sur les Brewers.

Il est surnommé « Le missile cubain » (« The Cuban Missile ») en raison de ses origines et de sa balle rapide explosive. Le 25 septembre 2010, il sert à Tony Gwynn, Jr. des Padres de San Diego un lancer à 105 mph (environ 168,9 km/h), le tir le plus rapide jamais mesuré dans un match de la Ligue majeure. Il bat l’ancien record de 104,8 mph (168,6 km/h) établi par Joel Zumaya des Tigers de Detroit en 2006.

Chapman lance 15 parties en relève pour les Reds en 2010. Il remporte deux victoires contre deux défaites et maintient une moyenne de points mérités de 2,03 en 13 manches et un tiers lancées, avec 19 retraits sur des prises. Il fait deux sorties en relève dans la courte Série de divisions où les Reds voient leur saison prendre fin par une élimination aux mains des Phillies de Philadelphie. En une manche et deux tiers lancées, Chapman accorde trois points, mais aucun n’est un point mérité. Il est néanmoins le lanceur perdant du deuxième match Reds-Phillies le 8 octobre.

En 2011, toujours utilisé comme releveur, Chapman réussit 70 retraits sur des prises en 50 manches au monticule. Amené au monticule dans 54 parties des Reds, il remporte 4 victoires contre une seule défaite et enregistre le 6 juin contre Saint-Louis son premier sauvetage dans le baseball majeur.

Chapman est nommé stoppeur des Reds le 20 mai 2012 et il termine 3e de la Ligue nationale pour les sauvetages avec 38 en 43 occasions. Du 26 juin au 4 septembre, il réalise un record de franchise avec 27 sauvetages en 27 occasions consécutives. Il présente une excellente moyenne de points mérités de 1,51 en 71 manches et deux tiers lancées, au cours desquelles il enregistre 122 retraits sur des prises, soit en moyenne 15,3 par 9 manches au monticule. Il gagne cinq parties contre cinq défaites. Invité à son premier match d’étoiles, Chapman est un des deux releveurs avec Craig Kimbrel des Braves d’Atlanta à recevoir des votes au scrutin désignant le gagnant du trophée Cy Young du meilleur lanceur de la saison. Il prend la 8e&nbsp buy basketball jerseys;place du vote. De plus, il prend le 12e rang du vote désignant le joueur par excellence de l’année dans la Ligue nationale.

Il participe aux séries éliminatoires avec les Reds, champions de la division Centrale de la Ligue nationale. Amené au monticule pour préserver la victoire des Reds, en avant 5-1 dans la Série de divisions qui oppose Cincinnati à San Francisco, Chapman connaît des ennuis alors qu’il accorde un point mérité, deux buts-sur-balles et commet deux mauvais lancers, mais il retire sur des prises Buster Posey avec les buts remplis pour mettre un terme au match. Il effectue deux autres sorties sans accorder de point dans la série, perdue par les Reds.

Malgré le fait que Chapman ait été l’un des releveurs et stoppeurs les plus efficaces du baseball en 2012, Cincinnati envisage de l’utiliser comme lanceur partant en 2013. L’équipe surprend toutefois lorsqu’elle se ravise et annonce vers la fin de l’entraînement de printemps que Chapman lancera de nouveau en relève en 2013.

En relève pour Cincinnati, Chapman apparaît encore dans 68 matchs en 2013, égalant son total de parties jouées de la saison précédente. Il enregistre le même nombre de sauvetages, soit 38, bon pour la 3e place dans la Ligue nationale. En 63 manches et deux tiers lancées, sa moyenne de points mérités est de 2,54 avec 112 retraits sur des prises, 4 victoires et 5 défaites. Il reçoit à la mi-saison sa 2e invitation au match des étoiles.

Lors d’un match pré-saison disputé le 19 mars 2014 à Surprise en Arizona, Chapman est violemment atteint au visage par une balle frappée en flèche par Salvador Pérez des Royals de Kansas City. Par respect pour le joueur des Reds, les entraîneurs des deux équipes demandent et obtiennent de l’arbitre l’arrêt de la partie. Transporté hors du terrain sur un brancart, Chapman souffre de fractures près de l’œil droit et du nez, ce qui requiert une chirurgie. Il rate de le début de la saison 2014 des Reds et son absence est estimée à 6 ou 8 semaines.

En éliminant Jordy Mercer des Pirates de Pittsburgh le 11 juillet 2014, Chapman établit un nouveau record du baseball majeur en enregistrant au moins un retrait sur des prises dans 40 apparitions consécutives en relève, une séquence qui a débuté le 21 août 2013 et qui est une partie plus longue que le record précédent, établi par Bruce Sutter sur 39 matchs du 1er juin au 2 octobre 1977.

Il reçoit à la mi-saison sa 3e invitation en autant d’années au match des étoiles.

Chapman maintient sa moyenne de points mérités à 2,00 en 54 manches lancées lors de 54 apparitions au monticule en 2014 et enregistre 106 retraits sur des prises. Il réalise 36 sauvetages.

Le 19 juillet 2015, Chapman réussit le 500e retrait sur des prises de sa carrière. Ce total est atteint en 292 manches dans les majeures, battant le précédent record de 500 retraits sur des prises en 305 manches par Craig Kimbrel.

La moyenne de points mérités de 1,63 de Chapman en 66 manches et un tiers lancées pour les Reds en 2015 est sa seconde meilleure en carrière après sa saison 2012. Ses 116 retraits sur des prises représentent aussi son second meilleur total jusque là, après 2012. Pour un club de dernière place, il réalise 33 sauvetages. Il honore sa 4e invitation en autant d’années au match des étoiles.

Au début décembre 2015, les Dodgers de Los Angeles s’entendent avec les Reds de Cincinnati pour leur transférer deux joueurs d’avenir en échange de Chapman. La transaction avorte cependant après les révélations faites par Yahoo! le 7 décembre 2015. Après avoir obtenu copie d’un rapport du département de police de Davie, le site web publie en effet les détails d’un incident de violence conjugale survenu dans la nuit du 30 au 31 octobre 2015 à la résidence d’Aroldis Chapman à Davie, en Floride. Cristina Barnea, amie de cœur de Chapman, avec qui elle a une enfant, alerte les policiers après que Chapman eut, selon elle, tenté de l’étrangler, ce que nie le joueur des Reds. Chapman confirme en revanche s’être barricadé dans son garage après que sa compagne eut pris la fuite, pour y tirer 8 projectiles d’arme à feu dans un mur de béton. Des amis témoignent avoir ensuite enfermé Chapman, sans son arme, dans une autre pièce en attendant l’arrivée des policiers. Aucune arrestation n’est effectuée, en raison d’un « manque de coopération de toutes les parties impliquées », selon la police, qui ne constate pas chez la présumée victime de blessures qui auraient pu mener à une accusation criminelle.

Après avoir pris connaissance de l’article, la Ligue majeure de baseball ouvre une enquête sur l’incident, comme le suggère sa politique adoptée en août 2015 sur la violence domestique. L’échange de Chapman des Reds aux Dodgers par conséquent avorte. Bien que le directeur général de Cincinnati, Walt Jocketty, soutienne que les révélations de Yahoo! ne représentent pas la cause de l’échec de la transaction, il est généralement accepté qu’il s’agisse de l’une des raisons du retrait des Dodgers de ces discussions, à plus forte raison puisque la menace d’une longue suspension imposée par la ligue plane sur Chapman.

Le 21 janvier 2016, le procureur d’État du comté de Broward, en Floride, annonce qu’aucune accusation ne sera portée contre Chapman. La compagne de Chapman avait refusé de porter plainte et indiqué à la police qu’elle ne se rappelait pas avoir dit que Chapman l’avait frappé meat tenderiser recipe, et ignorait qui avait tiré le coup de feu entendu le soir de l’incident. Néanmoins, la Ligue majeure de baseball impose des sanctions, en accord avec sa politique régissant, entre autres, les cas de violence conjugale : le 1er mars 2016, la ligue annonce que Chapman (entre temps passé aux Yankees de New York) est suspendu sans salaire pour 30 matchs de saison régulière, ce qui représente pour lui une perte financière de 1 856 557 dollars.

Le 28 décembre 2015, les Reds de Cincinnati échangent Aroldis Chapman aux Yankees de New York pour quatre joueurs de ligues mineures : les lanceurs droitiers Caleb Cotham et Rookie Davis, le joueur de troisième but Eric Jagielo et le joueur de deuxième but Tony Renda. Arrivé dans les majeures tardivement durant la saison 2010, Chapman a rempli à Cincinnati cinq des six années prévues au contrat originalement signé avec les Reds, dont les termes sont transférés aux Yankees. Il est donc prévu qu’il soit agent libre après la saison 2016. Cependant, il est au moment du transfert aux Yankees toujours sujet à l’enquête de la Ligue majeure de baseball sur l’incident de violence domestique survenu en octobre précédent ; une suspension sans salaire de 45 jours ou plus imposée par la ligue réduirait son nombre de jours passés sur un effectif de Ligue majeure, et repousserait la date de son accession au statut d’agent libre au mois de novembre 2017. Chapman est éventuellement suspendu pour 30 matchs, ce qui ne modifie pas son statut d’agent libre à venir après la saison 2016.

Le 25 juillet 2016, les Yankees échangent Chapman aux Cubs de Chicago contre le lanceur de relève Adam Warren et 3 joueurs des ligues mineures : l’arrêt-court Gleyber Torres et les voltigeurs Billy McKinney et Rashad Crawford. Chapman, qui devient agent libre au terme de la saison, fait partie de l’équipe des Cubs championne de la Série mondiale 2016. Dans le 5e match de la finale, Chicago faisant face à l’élimination, il réalise une performance qui lui est inhabituelle en réalisant un sauvetage de 8 retraits, totalisant 42 lancers. Il est le lanceur gagnant du dernier match de la finale contre Cleveland malgré une mauvaise performance où il sabote l’avance des Cubs en accordant un coup de circuit à Rajai Davis, égalant la marque et poussant le match ultime en manches supplémentaires.

Émile Beaussire

Home | Émile Beaussire

Émile Jacques Armand Beaussire, né à Luçon le 26 mai 1824 et mort à Paris le 28 mai 1889, est un philosophe et homme politique français.

Il fait ses études au collège de La Roche-sur-Yon, puis au lycée Louis-le-Grand. Il est admis second à l’École normale supérieure de Paris. Reçu deuxième à l’agrégation, entre Ernest Renan et Elme-Marie Caro, il entame en 1847 sa carrière d’enseignant aux collèges de Lille, Tournon et Grenoble. Ayant obtenu son doctorat en 1855 cheap boot socks, il devient professeur de littérature étrangère à la faculté des lettres de Poitiers. À partir de 1865, il est professeur de philosophie à Paris, au collège Rollin, au collège Charlemagne, puis à l’École normale où il est le suppléant de Jules Lachelier. En 1871, un article qu’il fait paraître dans la Revue des deux Mondes, où il proteste contre les excès de la Commune, lui vaut d’être incarcéré pendant quelques jours à la prison Mazas. Il est ensuite député de la Vendée de 1871 à 1876, de 1876 à 1877, et de 1879 à 1881, mais, écœuré par la politique, il ne se représente pas aux élections de 1881. Il est l’un des fondateurs, avec Émile Boutmy, de l’École libre des sciences politiques en 1872. En 1880, il est élu membre de l’Académie des sciences morales et politiques when to use a meat tenderizer, qu’il représente par deux fois au Conseil supérieur de l’Instruction publique.

Sur les autres projets Wikimedia :

King & Winge (fishing schooner)

Home | King & Winge (fishing schooner)

The King & Winge was one of the most famous ships ever built in Seattle, Washington, United States. Built in 1914, in the next 80 years she had participated in a famous Arctic rescue, been present at a great maritime tragedy, and been employed as a halibut schooner, a rum runner, a pilot boat, a yacht, and a crabber. She sank in high seas, without loss of life, in 1994.

King & Winge was originally a powered halibut schooner built by the King and Winge shipyard in West Seattle in 1914. She was designed by Albert M. Winge, co-owner of the shipyard. Her dimensions were 143 tons, 97′ length on the deck (110′ overall), 19.6′ beam and 9.7 depth of hold. As built she was fitted with a 140 horsepower (100 kW) Corliss gasoline engine and an electric lighting system. She had two 60′ high masts, and carried nine halibut dories. The construction was very strong, with 4×4 ½ inch oak frames, each set six inches apart, and sheathed with planking three inches (76 mm) thick, covered with another layer of ironbark sheathing. The schooner was divided into four watertight compartments, her hull was heavily braced, and her bow was nosed with steel plates for ice work.

While her builders had planned to put King & Winge in the halibut fishery, she was chartered before construction was complete by the Hibbard-Swenson Co. for an expedition to the Arctic for hunting, trading, and making a motion picture.

Captain Olaf Swenson and C. L. Hibbard took King & Winge up to Nome, where they found the U.S. revenue cutter Bear. Earlier that season, Bear had attempted to rescue the Stefansson expedition survivors, stranded in the Arctic since the sinking of their ship Karluk, crushed by ice in the Chukchi Sea in January. Bear had been forced to abandon the rescue effort by weather conditions and had returned to Nome to refuel. Swenson returned to Seattle for business reasons, but Hibbard and the navigator A.P. Jochkimson decided to go to Wrangel Island to look for the survivors, leaving a day ahead of the Bear.

Once arriving at Rodgers Harbor goalkeeper under gloves, on September 7, they found and took on board the three survivors there, and then went through huge ice floes to Waring Point, where they took on board nine more sweater lint. Sailing back south, they met the Bear and turned over the rescued men to the coast guard cutter.

The account above follows the H.W. McCurdy Marine History of the Pacific Northwest. A somewhat different account, with Swenson on the King & Winge with Jochimsen and commanding the umiak that landed on Wrangel Island is given by Burt McConnell, a contemporary eyewitness, and other sources. The origin of this difference is unclear.

The King & Winge was chartered by the US Coast and Geodetic Survey for two seasons wire-drag work in Alaska. Subsequent to this assignment she was sold to the National Independent Fisheries Company in 1916 and worked in the halibut fishery.

In October 1918, the King & Winge was present at one of the great tragedies of Alaskan maritime history, the wreck of the Princess Sophia. On October 23, 1918, coming south down Lynn Canal south from Skagway in a snowstorm, the Princess Sophia had struck Vanderbilt Reef, not far from the Sentinel Island Light. She was hung up high on the reef for a considerable time, and her captain apparently thought that she could be floated off at the next high tide. Consequently, no attempt was made to transfer the passengers to the King & Winge or the lighthouse tender Cedar, which, with a large number of smaller vessels, had heard of the wreck and gone to the Sophia’s aid. The sea conditions were bad, and any attempted transfer would have been risky in any case. Overnight, however, the wind came up, and the Sophia was washed off Vanderbilt Reef and sank with all 343 people aboard. Only the upper part of her mast remained above the water. All that the Cedar and the King & Winge could do was pick up floating bodies and take them to Juneau.

The King & Winge’s history in the early 1920s is reported to be obscure. In the fall of 1921, National Independent Fisheries Company chartered her to the Cape Flattery Pilots Association, to operate as a pilot boat at the western entrance of the Strait of Juan de Fuca. In the meantime, she had become legally encumbered as security for a loan. In 1922, she was sold to Northwest Trust & Savings Bank to satisfy the loan. In 1923, she was sold at auction to E.L. Skeel, otherwise unidentified. Skeel was possibly a pseudonym or stand-in for Roy Olmstead and T. J. Clarke, two former policeman who had opted for a substantially more lucrative career in the rum-running business, Prohibition having recently come into law. Clarke and Olmstead tried and failed to reregister the King & Winge as a Canadian vessel, and so the King & Winge passed into the possession of the Columbia Bar Pilot’s Association.

King and Winge was the Columbia Bar pilot boat from 1924 to 1958. She was called the Columbia by the pilot’s association. In 1924, she was converted from gasoline to diesel power. She served under the command of Captain F.E. Craig, who estimated he had made more than 50,000 crossings of the bar in her. In 1944, she returned to Seattle to be refit to Coast Guard standards as CGR-2469. Many of the men who worked on the refit had helped build her.

In 1958, Dr Clyde C. Parlova of Astoria, Oregon bought King & Winge from the pilot’s association, with the objective of restoring her as a sailing ship. How much progress Dr. Parlova made is not entirely known. Among other things, he restored her masts and the name King & Winge and paneled the pilothouse with Tennessee cherry wood. King & Winge was the official flagship of the 1958 Astoria Regatta. In late 1961, Jack Elsbree, of Seattle, a retired airline pilot, bought the King & Winge from him and brought her up to Lake Union in Seattle, with the same objective, that is, of restoring her to her original state. In 1962, she was sold to Wilburn Hall, who took her to Kodiak, Alaska for crab fishing. Hall is credited with pioneering the modern king crab fishery in the Bering Sea. In 1987 she was sold to Richard Maher of Homer, AK, who operated her as a longliner for halibut and blackcod and as a tender, as well as a crabber.

The King & Winge survived into modern times, sinking in 18-foot (5.5 m) waves in the Bering Sea, 22 miles (35 km) West of St. Paul Island on February 23, 1994. Attempts to save the flooding vessel failed and all four crew members were rescued by the USCG cutter Hamilton.

European School, Varese

Home | European School, Varese

The European School of Varese (Commonly known as ESV; Italian: Scuola Europea di Varese), in Varese, Italy, is a European School, one of a small number of schools founded by the European Union (EU) for the benefit of its staff in member states. The presence of the school in Varese is mainly because nearby Ispra hosts three institutes of the Joint Research Centre of the European Commission.

The school was founded in 1960. The school has three sections: a two-year nursery school, a 5-year primary school, and a 7-year secondary school. Students prepare for the European Baccalaureate. The European School of Varese is an institution of the European Union. Study at this institution brings a graduation diploma that qualifies for university study in all the countries of the EU.

It was previously recognized as a German school by the West German government the lemon squeeze hike, as the Europäische Schule.

The Pupils’ Committee of the European School of Varese (ESV PC), better known as the Comitato Studentesco (C.S.), is the only official student organisation within the European School of Varese. All members are elected by the students (President, Vice President and Treasurer by all students, the other members by the Capiclasse Assembly) at the beginning of each school year.

The C.S dry pack waterproof case. represents the students; top members of the C.S. represent the student body in the School Assemblies (C.d.E. and C.d.A.) and in the CoSup meetings.

The aim of the C.S. is to provide services for all secondary school students. These services are not defined and can vary, from organising events to helping students with issues brought by them to C.S. members. The nature of these issues is not specified and can be personal too; if a student wishes to find support in the C.S., he has the right to do so.

It is expected from the C.S. that it constantly provides students with what is asked of it from the students; the C.S tenderize a steak. agenda has to be addressing the wishes of the students. Therefore, contact between the C.S. and the students it represents is of primary importance.

Fútbol Club Barcelona Home SUAREZ 9 Jerseys

Fútbol Club Barcelona Home SUAREZ 9 Jerseys




Phallus atrovolvatus

Home | Phallus atrovolvatus

Phallus atrovolvatus in Kerala, Indien

Phallus atrovolvatus ist eine Pilzart aus der Familie der Stinkmorchelverwandten (Phallaceae). Sie wurde im Jahre 2005 von Francisco Calonge und Hanns Kreisel in Costa Rica entdeckt.

Zunächst erscheint Phallus atrovolvatus als 2–3 cm breites, schwarz gefärbtes Hexenei, das eine raue Oberfläche aufweist. Bei Reife öffnet sich das Hexenei und es streckt sich das zylindrische, weiße Receptaculum heraus, das 1–2 cm breit und 2–4 cm lang wird. Am oberen Ende des Receptaculums befindet sich ein kegelförmiges Hütchen, welches von der gelbbraun gefärbten Gleba bedeckt wird professional soccer socks. Von der Unterseite des Hütchens hängt eine zerbrechliche, netzartige Struktur (ein sog. Indusium) herab. Anders als bei anderen Vertretern der Stinkmorchelartigen weist die Gleba von Phallus atrovolvatus keinen unangenehmen, aasartigen Geruch steak tenderizing marinade, sondern einen angenehm-süßlichen Duft auf.

Bei Phallus atrovolvatus handelt es sich um einen Saprobionten, der einzeln oder in kleinen Gruppen auf Wiesen, Pflanzenresten und Totholz erscheint.

Phallus atrovolvatus ist nur aus den costa-ricanischen Provinzen Limón und Guanacaste bekannt sale football jerseys, wurde aber auch auf Hawaii gesammelt. In Limón wurde die Art in der Nähe von Cahuita ausgemacht best sports bottle, während sie in Guanacaste im La Fortuna-Nationalpark gefunden wurde. Seit 2013 sind aber auch Funde aus Indien bekannt geworden.


Home | Parsec

Il parsec (abbreviato in pc) è un’unità di lunghezza usata in astronomia. Significa “parallasse di un secondo d’arco” ed è definito come la distanza dalla Terra (o dal Sole) di una stella che ha una parallasse annua di 1 secondo d’arco. Il termine fu coniato nel 1913 su suggerimento dell’astronomo britannico Herbert Hall Turner.

È basato sul metodo della parallasse trigonometrica, che è il modo più antico e affidabile di misurare le distanze stellari, sebbene ancora oggi sia applicabile solo agli oggetti relativamente vicini (vedi più avanti per i dettagli).

Un parsec corrisponde quindi a:

(Vedere 1 E16 m per una lista di distanze comparabili, e notazione scientifica per una spiegazione della notazione utilizzata.)

Per motivi storici, gli astronomi in genere usano il parsec per le distanze astronomiche, invece degli anni luce. La prima misurazione diretta di un oggetto a distanze interstellari (della stella 61 Cygni), eseguita da Friedrich Wilhelm Bessel nel 1838, fu fatta basandosi sulla trigonometria, utilizzando l’ampiezza dell’orbita terrestre come linea di base. Il parsec, calcolato sempre in modo trigonometrico, geometricamente è il cateto lungo del triangolo rettangolo che ha come base l’unità astronomica, e come angolo al vertice un secondo (1″) di grado sessagesimale.

Più una stella è vicina, più la sua parallasse è grande. Ma nessuna stella conosciuta ha una parallasse maggiore di 1 secondo d’arco, eccezion fatta per il Sole pink footy socks, perché nessuna stella è abbastanza vicina: il primato appartiene alla stella Proxima Centauri, con una parallasse di 0,762 arcosecondi, a una distanza di circa 4,28 anni luce, pari a circa 1,3 parsec. Poiché per archi molto piccoli l’arco e la corda tendono ad avere la stessa lunghezza, la distanza di un corpo celeste in parsec è il reciproco della sua parallasse in secondi.

La misura delle distanze degli oggetti celesti in parsec è un aspetto chiave dell’astrometria, la scienza del misurare le posizioni degli oggetti celesti.

A causa della piccolezza degli spostamenti parallattici, le osservazioni da terra forniscono misure affidabili per distanze stellari non più grandi di circa 100 parsec (325 anni luce) antique football jersey, corrispondenti a parallassi di almeno 1 centesimo di secondo d’arco, o 10 mas (1 mas = 1 millesimo di secondo d’arco).

Tra il 1989 e il 1993 il satellite Hipparcos, lanciato dall’Agenzia Spaziale Europea (ESA) nel 1989, ha misurato le parallassi di circa 100 000 stelle con una precisione di 0,97 mas, e ha quindi ottenuto misure di distanza accurate per stelle fino a 100 parsec di distanza.

Il satellite FAME della NASA avrebbe dovuto essere lanciato nel 2004, per misurare le parallassi di 40 milioni di stelle con precisione sufficiente per distanze fino a 200 parsec bamboo glass water bottle. I finanziamenti necessari per la missione sono stati annullati dalla NASA nel gennaio 2002.

Il satellite GAIA dell’ESA, lanciato per il 2013, ha una precisione sufficientemente alta per misurare distanze stellari fino al centro galattico, a circa 8000 parsec di distanza nella costellazione del Sagittario, con una precisione del 90%.

December 31, 2016. Tagged: , , , .

Port de l’Angonella

Home | Port de l’Angonella

Port de l’Angonella är ett bergspass i Andorra, på gränsen till Frankrike. Det ligger i den nordvästra delen av landet, 12 kilometer norr om huvudstaden Andorra la Vella. Port de l’Angonella ligger 2&nbsp

United States Home BESLER 5 Jerseys

United States Home BESLER 5 Jerseys



;760 meter över havet.

Terrängen runt Port de l’Angonella är bergig åt sydväst, men åt nordost är den kuperad. Port de l’Angonella ligger uppe på en höjd. Den högsta punkten i närheten är 2 834 meter över havet, 1 custom soccer uniforms,2 kilometer sydväst om Port de l’Angonella. Närmaste större samhälle är Andorra la Vella, 12,2 kilometer söder om Port de l’Angonella insulated glass water bottle. I trakten runt Port de l’Angonella finns ovanligt många namngivna klippformationer, skogar och grottor.

I trakten runt Port de l’Angonella växer i huvudsak barrskog. Inlandsklimat råder i trakten. Årsmedeltemperaturen i trakten är 5 °C. Den varmaste månaden är juli, då medeltemperaturen är 17 °C reflective running belts, och den kallaste är februari, med -5 °C. Genomsnittlig årsnederbörd är 1 456 millimeter. Den regnigaste månaden är april, med i genomsnitt 233 mm nederbörd, och den torraste är oktober, med 67 mm nederbörd. Trakten runt Port de l’Angonella är ganska tätbefolkad, med 83 invånare per kvadratkilometer.

December 31, 2016. Tagged: , , , .

Wave–particle duality

Home | Wave–particle duality

Wave–particle duality is the concept that every elementary particle or quantic entity may be partly described in terms not only of particles, but also of waves. It expresses the inability of the classical concepts “particle” or “wave” to fully describe the behavior of quantum-scale objects. As Albert Einstein wrote: “It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do“.

Through the work of Max Planck, Einstein, Louis de Broglie, Arthur Compton, Niels Bohr and many others, current scientific theory holds that all particles also have a wave nature (and vice versa). This phenomenon has been verified not only for elementary particles, but also for compound particles like atoms and even molecules. For macroscopic particles, because of their extremely short wavelengths, wave properties usually cannot be detected.

Although the use of the wave-particle duality has worked well in physics, the meaning or interpretation has not been satisfactorily resolved; see Interpretations of quantum mechanics.

Niels Bohr regarded the “duality paradox” as a fundamental or metaphysical fact of nature. A given kind of quantum object will exhibit sometimes wave, sometimes particle, character, in respectively different physical settings. He saw such duality as one aspect of the concept of complementarity. Bohr regarded renunciation of the cause-effect relation, or complementarity, of the space-time picture, as essential to the quantum mechanical account.

Werner Heisenberg considered the question further. He saw the duality as present for all quantic entities, but not quite in the usual quantum mechanical account considered by Bohr. He saw it in what is called second quantization, which generates an entirely new concept of fields which exist in ordinary space-time, causality still being visualizable. Classical field values (e.g. the electric and magnetic field strengths of Maxwell) are replaced by an entirely new kind of field value, as considered in quantum field theory. Turning the reasoning around, ordinary quantum mechanics can be deduced as a specialized consequence of quantum field theory.

Democritus—the original atomist—argued that all things in the universe, including light, are composed of indivisible sub-components (light being some form of solar atom). At the beginning of the 11th Century, the Arabic scientist Alhazen wrote the first comprehensive treatise on optics; describing refraction, reflection, and the operation of a pinhole lens via rays of light traveling from the point of emission to the eye. He asserted that these rays were composed of particles of light. In 1630, René Descartes popularized and accredited the opposing wave description in his treatise on light, showing that the behavior of light could be re-created by modeling wave-like disturbances in a universal medium (“plenum”). Beginning in 1670 and progressing over three decades, Isaac Newton developed and championed his corpuscular hypothesis, arguing that the perfectly straight lines of reflection demonstrated light’s particle nature; only particles could travel in such straight lines. He explained refraction by positing that particles of light accelerated laterally upon entering a denser medium. Around the same time, Newton’s contemporaries Robert Hooke and Christiaan Huygens—and later Augustin-Jean Fresnel—mathematically refined the wave viewpoint, showing that if light traveled at different speeds in different media (such as water and air), refraction could be easily explained as the medium-dependent propagation of light waves. The resulting Huygens–Fresnel principle was extremely successful at reproducing light’s behavior and was subsequently supported by Thomas Young’s 1803 discovery of double-slit interference. The wave view did not immediately displace the ray and particle view, but began to dominate scientific thinking about light in the mid 19th century, since it could explain polarization phenomena that the alternatives could not.

James Clerk Maxwell discovered that he could apply his equations for electromagnetism, which had been previously discovered, along with a slight modification to describe self-propagating waves of oscillating electric and magnetic fields. When the propagation speed of these electromagnetic waves was calculated, the speed of light fell out. It quickly became apparent that visible light, ultraviolet light, and infrared light (phenomena thought previously to be unrelated) were all electromagnetic waves of differing frequency. The wave theory had prevailed—or at least it seemed to.

While the 19th century had seen the success of the wave theory at describing light, it had also witnessed the rise of the atomic theory at describing matter. Antoine Lavoisier deduced the law of conservation of mass and categorized many new chemical elements and compounds; and Joseph Louis Proust advanced chemistry towards the atom by showing that elements combined in definite proportions. This led John Dalton to propose that elements were invisible sub components; Amedeo Avogadro discovered diatomic gases and completed the basic atomic theory, allowing the correct molecular formulae of most known compounds—as well as the correct weights of atoms—to be deduced and categorized in a consistent manner. Dimitri Mendeleev saw an order in recurring chemical properties, and created a table presenting the elements in unprecedented order and symmetry.

At the close of the 19th century, the reductionism of atomic theory began to advance into the atom itself; determining, through physics, the nature of the atom and the operation of chemical reactions. Electricity, first thought to be a fluid, was now understood to consist of particles called electrons. This was first demonstrated by J. J. Thomson in 1897 when, using a cathode ray tube, he found that an electrical charge would travel across a vacuum (which would possess infinite resistance in classical theory). Since the vacuum offered no medium for an electric fluid to travel, this discovery could only be explained via a particle carrying a negative charge and moving through the vacuum. This electron flew in the face of classical electrodynamics, which had successfully treated electricity as a fluid for many years (leading to the invention of batteries, electric motors, dynamos, and arc lamps). More importantly, the intimate relation between electric charge and electromagnetism had been well documented following the discoveries of Michael Faraday and James Clerk Maxwell. Since electromagnetism was known to be a wave generated by a changing electric or magnetic field (a continuous, wave-like entity itself) an atomic/particle description of electricity and charge was a non sequitur. Furthermore, classical electrodynamics was not the only classical theory rendered incomplete.

In 1901, Max Planck published an analysis that succeeded in reproducing the observed spectrum of light emitted by a glowing object. To accomplish this, Planck had to make an ad hoc mathematical assumption of quantized energy of the oscillators (atoms of the black body) that emit radiation. Einstein later proposed that electromagnetic radiation itself is quantized, not the energy of radiating atoms.

Black-body radiation, the emission of electromagnetic energy due to an object’s heat, could not be explained from classical arguments alone. The equipartition theorem of classical mechanics, the basis of all classical thermodynamic theories, stated that an object’s energy is partitioned equally among the object’s vibrational modes. But applying the same reasoning to the electromagnetic emission of such a thermal object was not so successful. That thermal objects emit light had been long known. Since light was known to be waves of electromagnetism, physicists hoped to describe this emission via classical laws. This became known as the black body problem. Since the equipartition theorem worked so well in describing the vibrational modes of the thermal object itself, it was natural to assume that it would perform equally well in describing the radiative emission of such objects. But a problem quickly arose: if each mode received an equal partition of energy, the short wavelength modes would consume all the energy. This became clear when plotting the Rayleigh–Jeans law which, while correctly predicting the intensity of long wavelength emissions, predicted infinite total energy as the intensity diverges to infinity for short wavelengths. This became known as the ultraviolet catastrophe.

In 1900, Max Planck hypothesized that the frequency of light emitted by the black body depended on the frequency of the oscillator that emitted it, and the energy of these oscillators increased linearly with frequency (according to his constant h, where E = hν). This was not an unsound proposal considering that macroscopic oscillators operate similarly: when studying five simple harmonic oscillators of equal amplitude but different frequency, the oscillator with the highest frequency possesses the highest energy (though this relationship is not linear like Planck’s). By demanding that high-frequency light must be emitted by an oscillator of equal frequency, and further requiring that this oscillator occupy higher energy than one of a lesser frequency, Planck avoided any catastrophe; giving an equal partition to high-frequency oscillators produced successively fewer oscillators and less emitted light. And as in the Maxwell–Boltzmann distribution, the low-frequency, low-energy oscillators were suppressed by the onslaught of thermal jiggling from higher energy oscillators, which necessarily increased their energy and frequency.

The most revolutionary aspect of Planck’s treatment of the black body is that it inherently relies on an integer number of oscillators in thermal equilibrium with the electromagnetic field. These oscillators give their entire energy to the electromagnetic field, creating a quantum of light, as often as they are excited by the electromagnetic field, absorbing a quantum of light and beginning to oscillate at the corresponding frequency. Planck had intentionally created an atomic theory of the black body, but had unintentionally generated an atomic theory of light, where the black body never generates quanta of light at a given frequency with an energy less than . However, once realizing that he had quantized the electromagnetic field, he denounced particles of light as a limitation of his approximation, not a property of reality.

While Planck had solved the ultraviolet catastrophe by using atoms and a quantized electromagnetic field, most contemporary physicists agreed that Planck’s “light quanta” represented only flaws in his model. A more-complete derivation of black body radiation would yield a fully continuous and ‘wave-like’ electromagnetic field with no quantization. However, in 1905 Albert Einstein took Planck’s black body model to produce his solution to another outstanding problem of the day: the photoelectric effect, wherein electrons are emitted from atoms when they absorb energy from light. Since their discovery eight years previously, electrons had been studied in physics laboratories worldwide.

In 1902 Philipp Lenard discovered that the energy of these ejected electrons did not depend on the intensity of the incoming light, but instead on its frequency. So if one shines a little low-frequency light upon a metal, a few low energy electrons are ejected. If one now shines a very intense beam of low-frequency light upon the same metal, a whole slew of electrons are ejected; however they possess the same low energy, there are merely more of them. The more light there is, the more electrons are ejected. Whereas in order to get high energy electrons, one must illuminate the metal with high-frequency light. Like blackbody radiation, this was at odds with a theory invoking continuous transfer of energy between radiation and matter. However, it can still be explained using a fully classical description of light, as long as matter is quantum mechanical in nature.

If one used Planck’s energy quanta, and demanded that electromagnetic radiation at a given frequency could only transfer energy to matter in integer multiples of an energy quantum , then the photoelectric effect could be explained very simply. Low-frequency light only ejects low-energy electrons because each electron is excited by the absorption of a single photon. Increasing the intensity of the low-frequency light (increasing the number of photons) only increases the number of excited electrons, not their energy, because the energy of each photon remains low. Only by increasing the frequency of the light, and thus increasing the energy of the photons, can one eject electrons with higher energy. Thus, using Planck’s constant h to determine the energy of the photons based upon their frequency, the energy of ejected electrons should also increase linearly with frequency; the gradient of the line being Planck’s constant. These results were not confirmed until 1915, when Robert Andrews Millikan, who had previously determined the charge of the electron, produced experimental results in perfect accord with Einstein’s predictions. While the energy of ejected electrons reflected Planck’s constant, the existence of photons was not explicitly proven until the discovery of the photon antibunching effect, of which a modern experiment can be performed in undergraduate-level labs. This phenomenon could only be explained via photons, and not through any semi-classical theory (which could alternatively explain the photoelectric effect). When Einstein received his Nobel Prize in 1921, it was not for his more difficult and mathematically laborious special and general relativity, but for the simple, yet totally revolutionary, suggestion of quantized light. Einstein’s “light quanta” would not be called photons until 1925, but even in 1905 they represented the quintessential example of wave-particle duality. Electromagnetic radiation propagates following linear wave equations, but can only be emitted or absorbed as discrete elements, thus acting as a wave and a particle simultaneously.

In 1905, Albert Einstein provided an explanation of the photoelectric effect, a hitherto troubling experiment that the wave theory of light seemed incapable of explaining. He did so by postulating the existence of photons, quanta of light energy with particulate qualities.

In the photoelectric effect, it was observed that shining a light on certain metals would lead to an electric current in a circuit. Presumably, the light was knocking electrons out of the metal, causing current to flow. However, using the case of potassium as an example, it was also observed that while a dim blue light was enough to cause a current, even the strongest, brightest red light available with the technology of the time caused no current at all. According to the classical theory of light and matter, the strength or amplitude of a light wave was in proportion to its brightness: a bright light should have been easily strong enough to create a large current. Yet, oddly, this was not so.

Einstein explained this conundrum by postulating that the electrons can receive energy from electromagnetic field only in discrete portions (quanta that were called photons): an amount of energy E that was related to the frequency f of the light by

where h is Planck’s constant (6.626 × 10−34 J seconds). Only photons of a high enough frequency (above a certain threshold value) could knock an electron free. For example, photons of blue light had sufficient energy to free an electron from the metal, but photons of red light did not. One photon of light above the threshold frequency could release only one electron; the higher the frequency of a photon, the higher the kinetic energy of the emitted electron, but no amount of light (using technology available at the time) below the threshold frequency could release an electron. To “violate” this law would require extremely high-intensity lasers which had not yet been invented. Intensity-dependent phenomena have now been studied in detail with such lasers.

Einstein was awarded the Nobel Prize in Physics in 1921 for his discovery of the law of the photoelectric effect.

In 1924, Louis-Victor de Broglie formulated the de Broglie hypothesis, claiming that all matter, not just light, has a wave-like nature; he related wavelength (denoted as λ) usa soccer goalie, and momentum (denoted as p):

This is a generalization of Einstein’s equation above, since the momentum of a photon is given by p =



{\displaystyle {\tfrac {E}{c}}}

and the wavelength (in a vacuum) by λ =



{\displaystyle {\tfrac {c}{f}}}

[citation needed] that the Afshar experiment (2007) shows that it is possible to simultaneously observe both wave and particle properties of photons. This claim is, however, rejected by other scientists.[citation needed]

At least one scientist proposes that the duality can be replaced by a “wave-only” view. In his book Collective Electrodynamics: Quantum Foundations of Electromagnetism (2000), Carver Mead purports to analyze the behavior of electrons and photons purely in terms of electron wave functions, and attributes the apparent particle-like behavior to quantization effects and eigenstates. According to reviewer David Haddon:

Mead has cut the Gordian knot of quantum complementarity. He claims that atoms, with their neutrons, protons, and electrons, are not particles at all but pure waves of matter. Mead cites as the gross evidence of the exclusively wave nature of both light and matter the discovery between 1933 and 1996 of ten examples of pure wave phenomena, including the ubiquitous laser of CD players, the self-propagating electrical currents of superconductors, and the Bose–Einstein condensate of atoms.

Albert Einstein, who, in his search for a Unified Field Theory, did not accept wave-particle duality, wrote:

This double nature of radiation (and of material corpuscles)…has been interpreted by quantum-mechanics in an ingenious and amazingly successful fashion. This interpretation…appears to me as only a temporary way out…

The many-worlds interpretation (MWI) is sometimes presented as a waves-only theory, including by its originator, Hugh Everett who referred to MWI as “the wave interpretation”.

The Three Wave Hypothesis of R. Horodecki relates the particle to wave. The hypothesis implies that a massive particle is an intrinsically spatially as well as temporally extended wave phenomenon by a nonlinear law.

Still in the days of the old quantum theory, a pre-quantum-mechanical version of wave–particle duality was pioneered by William Duane, and developed by others including Alfred Landé. Duane explained diffraction of x-rays by a crystal in terms solely of their particle aspect. The deflection of the trajectory of each diffracted photon was explained as due to quantized momentum transfer from the spatially regular structure of the diffracting crystal.

It has been argued that there are never exact particles or waves, but only some compromise or intermediate between them. For this reason, in 1928 Arthur Eddington coined the name “wavicle” to describe the objects although it is not regularly used today. One consideration is that zero-dimensional mathematical points cannot be observed. Another is that the formal representation of such points, the Dirac delta function is unphysical, because it cannot be normalized. Parallel arguments apply to pure wave states. Roger Penrose states:

“Such ‘position states’ are idealized wavefunctions in the opposite sense from the momentum states. Whereas the momentum states are infinitely spread out, the position states are infinitely concentrated. Neither is normalizable […].”

Relational quantum mechanics is developed which regards the detection event as establishing a relationship between the quantized field and the detector. The inherent ambiguity associated with applying Heisenberg’s uncertainty principle and thus wave–particle duality is subsequently avoided.

Although it is difficult to draw a line separating wave–particle duality from the rest of quantum mechanics, it is nevertheless possible to list some applications of this basic idea.

December 30, 2016. Tagged: , , .

Kelme Outlet | Le Coq Sport Outlet

kelme paul frank outlet new balance outlet bogner outlet le coq sportif outlet dior tassen dior zonnebril dior online